1023. The Conformation of 4-Substituted Epoxycyclopentanes

By J. J. McCullough, H. B. Henbest, R. J. Bishop, (in part) G. M. Glover, and L. E. Sutton

Abstract

Dipole moments of some 4-substituted epoxycyclopentanes indicate that the carbon ring is buckled. The two-ring system in most of the compounds is boat-shaped, but one proves to be chair-shaped. Explanations of these observations are suggested.

Cyclopentane is probably non-planar. ${ }^{1-3}$ Cyclopent-1-ene is found from its microwave spectrum ${ }^{4}$ to have ring atom 4 (cf. diagram I) out of the plane of the other four atoms. Epoxycyclopentane ${ }^{5}$ and epoxycyclohexane ${ }^{6}$ have similarly been shown to have the four carbon atoms in, and adjacent to, the epoxy-ring coplanar, but the other two atoms of the carbon ring in the latter compound are out of this plane, one being above it and the other below, while in the former the conformation is not entirely certain although the results are consistent with ring atom 4 being in this plane. The electric dipole moments of some 4 -substituted derivatives of epoxycyclopentane are now reported and used to obtain the conformations of the carbon rings.

Measurements of dielectric constant (ε), specific volume (v) and refractive index (n) have been made on dilute solutions of weight fraction (w) in dry benzene at 25°. Results have been calculated by the method of Halverstadt and Kumler ${ }^{7}$ using (R. J. B.) both the measured molar refraction, $\left[R_{\mathrm{D}}\right]$ (obs.), and the molar refraction calculated from tables of bond refractions, ${ }^{8}\left[R_{\mathrm{D}}\right]$ (calc.), as the molar distortion polarisation, the mean value of the moment being used in the Discussion; or (G. M. G.) the measured molar refraction as the molar distortion polarisation.

Discussion

From the moments of the disubstituted cyclopentanes and those of the appropriate monosubstituted ones, the angles between the dipole axes can be calculated (see θ, in Table 2). By using structural information from the microwave investigation of epoxycyclopentane, ${ }^{5}$ viz., that the angle between the plane of the epoxy-ring and that of ring atoms $1,2,3,5$ is 98°, and by assuming that the bond to the polar 4 -substituent makes an angle of $54 \cdot 75^{\circ}$ with the plane of atoms $3,4,5$, the dihedral angle, ϕ (in Table 2), between this plane and that of atoms $1,2,3,5$ [see diagrams (IIa and b)] is then calculated. ϕ is defined as positive when ring atom 4 is on the same side of plane $1,2,3,5$ as the oxygen atom, i.e., when the two-ring system is boat-shaped, and negative when it is chair-shaped. The

[^0]Table 1
Physical properties of cycloalkane derivatives

$10^{8} w$	ε	v	n		$10^{6} w$	ε	v	n
(R. J. B.) 0	$2.2741{ }^{9}$	$1 \cdot 1446{ }^{10}$	$1 \cdot 4980^{10}$	4 β-Cyano- 4α-methylepoxycyclopentane				
Epoxycyclopentane					445	$2 \cdot 2854$	$1 \cdot 1445$	1.49801
632	$2 \cdot 2767$	1-1445	1.49796		1130	$2 \cdot 3030$	1-1443	
1556	$2 \cdot 2810$	1.1446	1.49781		1558	$2 \cdot 3131$	1-1443	1.49800
2871	$2 \cdot 2878$	1-1444	$1 \cdot 49777$		2305	$2 \cdot 3376$	1-1439	$1 \cdot 49790$
5253	$2 \cdot 3002$	1-1444	1-49755	4-Cyanotetrahydropyran				
Cyanocyclopentane					910	2.2818	$1 \cdot 1445$	1.49791
3969	$2 \cdot 3349$	$1 \cdot 1443$	1.49793		2108	$2 \cdot 2900$	1-1444	
5025	$2 \cdot 3524$	1-1443	1-49781		4283	$2 \cdot 3098$		1.49784
9463	$2 \cdot 4211$	1-1440	75		8910	$2 \cdot 3487$	1-1431	$1 \cdot 49457$
11,784	$2 \cdot 4562$	1-1439	1-49755	(G. M. G.)	0	$2 \cdot 2750$	1-1447	$1 \cdot 4980$
4α-Bromoepoxycyclopentane 4α-Cyanoepoxycyclopentane								
1851	$2 \cdot 2784$	1-1438	1.49803		1017	$2 \cdot 2833$	1-1446	$1 \cdot 49799$
3253	$2 \cdot 2818$	-	1.49800		1904	$2 \cdot 2904$	1-1444	1.49798
4697	$2 \cdot 2852$	1-1424	1.49800		3576	$2 \cdot 3044$	1-1440	1.49794
4β-Bromoepoxycyclopentane								
279	$2 \cdot 2764$	1-1445	1-49804	48-Cyan	epoxy	lopentane		
523	$2 \cdot 2786$	1-1443	1.49804		1096	$2 \cdot 3056$	1-1444	1.49800
1971	$2 \cdot 2908$	$1 \cdot 1435$	1-49804		1980	$2 \cdot 3304$	1-1441	1.49799
4α-Cyano-4 β-methylepoxycyclopentane					3557 4357	$2 \cdot 3745$ $2 \cdot 3965$	1.1436 1.1433	1.49798 1.49797
					4357	$2 \cdot 3965$	$1 \cdot 1433$	$1 \cdot 49797$
2028	$2 \cdot 2869$	$1 \cdot 1443$	1.49793					
3780	$2 \cdot 2977$	$1 \cdot 1438$	1.49784					
7346	$2 \cdot 3206$	1-1432	1-49778					
$\mathrm{d} / \mathrm{d} w$	$\mathrm{d} v / \mathrm{d} w$	$\mathrm{d} n / \mathrm{d} w$	${ }_{T} \mathrm{P}_{2} \infty$		(obs.)	$\left.\mathrm{R}_{\mathrm{D}}\right]$ (calc.)		(D)
Epoxycyclopentane								
$4 \cdot 9$	-0.05	-0.08	$104 \cdot 9$					土 0.02
$\pm 0 \cdot 1$	± 0.01	± 0.01						± 0.02
Cyanocyclopentane								
15.50	-0.060	-0.038	308.0				$3 \cdot 70$	± 0.01
± 0.05	± 0.002	± 0.001						± 0.01
4α-Bromoeporycyclopentane								
$2 \cdot 37$	-0.46	$0 \cdot 00$	105.9				1.89	+0.02
± 0.01	± 0.02							± 0.02
4β-Bromoepoxycyclopentane								
$8 \cdot 5$	-0.56	0.00	288.9				$3 \cdot 57$	-0.03
$\pm 0 \cdot 1$	± 0.02							± 0.03
4α-Cyano- 4β-methylepoxycyclopentane								
$6 \cdot 30$	-0.20	-0.035	$180 \cdot 5$				$2 \cdot 70$	+ 0.01
± 0.05	± 0.01	± 0.005					$2 \cdot 70$	-0.01
4β-Cyano- 4α-methylepoxycyclopentane								
26	0.25	$0 \cdot 00$	$634 \cdot 7$				$5 \cdot 4$	$0 \cdot 1$
	± 0.05						$5 \cdot 4$	$0 \cdot 1$
4-Cyanotetrahydropyran								
$8 \cdot 36$	-0.17	-0.05	$214 \cdot 4$				$3 \cdot 02$	0.02
± 0.03	± 0.05	± 0.02					3.02	± 0.02
4α-Cyanoepoxycyclopentane								
8-183	-0.24	-0.015	199				$2 \cdot 89$	$0 \cdot 01$
4β-Cyanoepoxycyclopentane								
27.92	-0.32	$0 \cdot 007$	605				5•33	: 0.01

[^1]calculations should be made with allowance for induced moments, and this has been done ${ }^{11}$ using group refractions, viz., oxygen $3 \cdot 08$, cyano-group $4 \cdot 82$, bromo-group $9 \cdot 39$ c.c. (values calculated neglecting induced moments are given in parentheses). The compounds with the polar substituent on ring atom 4 trans to the epoxy-group are termed α-compounds, those with it cis are β-compounds

The results show that the α - and the β-4-cyano-derivatives, with either H or CH_{3} in the 4β - and the 4α-positions, respectively, as well as the 4α-bromo-derivative, all have boat

Table 2
Dipole moments and derived stereochemistry of epoxycyclopentanes

Compound	μ (D)	(Ref.)	Angle dipo	between les θ	Dihedral angle ϕ		Group
Epoxycyclopentane	$2 \cdot 00 \pm 0.2$	(a)					
Cyanocyclopentane	3.70 ± 0.01	(a)					
Bromocyclopentane ..	2.21 ± 0.02	(b)					
4α-Cyano Q .	2.89 ± 0.01	(a)	129.75°	$\left(129^{\circ}\right)$	23°	$\left(24^{\circ}\right)$	A
4β-Cyano Q	5.33 ± 0.01	(a)	39.75°	(43.5 ${ }^{\circ}$)	$3.5{ }^{\circ}$	(0 ${ }^{\circ}$)	A
4α-Bromo Q	1.91 土 0.01	(a)	$124.5{ }^{\circ}$	(126 ${ }^{\circ}$)	$28.25{ }^{\circ}$	(26.5 ${ }^{\circ}$)	A
4 β-Bromo Q	3.56 ± 0.01	(a)	$57.5{ }^{\circ}$	(64.5 ${ }^{\circ}$)	-14.25°	-21°)	B
4α-Cyano-4 β-methyl Q	2.70 ± 0.01	(a)	135°	(135 ${ }^{\circ}$)	17.75°	$\left(18^{\circ}\right)$	A
4β-Cyano-4 α-methyl Q	$5 \cdot 4 \pm 0 \cdot 1$	(a)	$33.5{ }^{\circ}$	(39 ${ }^{\circ}$)	$9.75{ }^{\circ}$	$\left(4^{\circ}\right)$	A

conformations: these form group A. Only the 4β-bromo-derivative has a chair conformation (group B). The energies which could determine conformations are those due to (i) rotation about ring bonds, (ii) changes of bond angles, (iii) steric repulsion between fourth or higher neighbours, and (iv) dipole-dipole interactions. These are considered below.
(i) Diagrams (III) and (IV) show views along ring bonds joining atoms 4-3 and 3-2, respectively, in the plane ring conformation of epoxycyclopentane (I). There are corresponding views along the $4-5$ and $5-1$ axes Diagram (III) shows that there are six pairs of fully eclipsed bonds in this conformation. From the rough value ascribed to the barrier to rotation about the central $\mathrm{C}-\mathrm{C}$ bond in n-butane (ca. 2.8 kcal . mole ${ }^{-1}$), ${ }^{13} \mathrm{cf}$. the rotation barriers in ethane $2 \cdot 9{ }^{13,14}$ and in propane $3 \cdot 4,{ }^{13}$ it may be inferred that the loss of energy per pair of eclipsed bonds on going to a staggered conformation is about 1 kcal . mole ${ }^{-1}$. If the ring buckles to make a two-ring boat or chair form, eclipsing is reduced and some of this stability is gained. In the 4 -cyano- 4 -methyl compounds, however, either distortion would do this equally well and so neither is favoured. In the $\operatorname{cis}(\beta)$-compounds distortion to a chair-type, and in the $\operatorname{trans}(\alpha)$-compounds distortion to a boat-type is probably slightly favoured because this gives a trans instead of a gauche conformation to the bonds shown in diagram (III).
(ii) Buckling would decrease the average ring bond angle from 108° and so would increase bond angle strain energy which is a minimum in the planar conformation, but buckling to give $\phi= \pm 10^{\circ}$ only causes a decrease of 0.25° per bond angle which for a bending force constant ${ }^{15}$ of 17.5 cal . mole ${ }^{-1}$ degree ${ }^{-2}$ means an increase of energy of only 0.005 kcal mole. ${ }^{-1}$. Comparatively small interactions can therefore cause buckling. In diagram (IV) the direction of the bond from ring atom 2 to H^{\prime} is assumed to be the same as that of the corresponding bond in ethylene oxide. This bond is, therefore, partly eclipsed in the plane conformation by the bond from atom 3 to $\mathrm{H}^{\prime \prime}$. Buckling to a boat form (clockwise rotation of atoms $4, \mathrm{H}, \mathrm{H}^{\prime \prime}$) would reduce this particular energy in two

[^2]bonds per molecule, but buckling to a chair form (anti-clockwise rotation) would increase it. The diagram also shows complete eclipsing of bonds $3-4$ and $2-1$, but if the latter is really a bent ${ }^{16}$ or " banana " bond with the electron charge cloud centred round the broken line

(I)

(IIa)

(V)
instead of the full one, and if also the $2-\mathrm{O}$ bond is to be similarly represented, then interaction of bond 3^{-4} with 2^{-1} and 2^{-O} would be reduced by clockwise rotation but increased by the opposite. These two sets of interactions both favour a boat conformation.
(iii) Comparison of calculated distances between fourth neighbouring groups across the ring (e.g., $\beta-\mathrm{Br}$ or centre of $\beta-\mathrm{CN}$, and O) with sums of van der Waals radii indicate that the steric repulsion forces, even for $\beta-\mathrm{Br}$, are not likely to be large enough to decide conformation.
(iv) Calculations which treat the dipoles as charge doublets with formal charges placed on atoms (epoxy-dipole $1 \AA$ long with negative end at 0 , cyano-dipole $1 \cdot 16 \AA$ long with negative end at N , bromo-dipole $1.94 \AA$ long with negative end at Br) show that for the compounds in group A the change in dipole-dipole energy with change in conformation is small, e.g., $<0.05 \mathrm{kcal}$ mole ${ }^{-1}$ for a change from the planar conformation to a boat with $\phi=+10^{\circ}$. In the $\operatorname{trans}(\alpha)$-compounds the separation of the polar groups is $4-5 \AA$ so this insensitivity is to be expected. In the $4-\beta$-cyano-compounds the negative end of the epoxy-dipole is only $\sim 3 \AA$ from positive end of the cyano-dipole, so the dipole-dipole energy very slightly favours the boat conformation (-0.05 kcal . mole ${ }^{-1}$, with $\phi=+10^{\circ}$). Although dipole-dipole attraction may provide additional stabilisation of the boat conformation in this case, it does not cause the related monocyclic compound, 4-cyanotetrahydropyran (V; obs. $\mu=3.02$ D see Table 1) to adopt a similar conformation. The chair-shaped conformation has calculated $\mu=3.08 \mathrm{D}$ (with either an axial or an equatorial nitrile group) and so is the actual one. The analogy is, however, not perfect. In the 4β-bromo compound the dipole-dipole energy is increased by 0.2 kcal .mole ${ }^{-1}$ when a boat conformation with $\phi=+10^{\circ}$ is formed from a planar one, i.e., there is repulsion.

Consideration of these energies suggests that there is a marked tendency for the carbon ring to buckle and that the boat form is generally favoured by the torsional energies about bonds 3^{-2} and 5^{-1}, but if the dipole-dipole energy or the steric energy is large enough, as it may be for a β-substituted compound, the chair conformation is the more stable. On this basis, epoxycyclopentane is predicted to have a boat conformation.

One of the authors (R. J. B.) thanks the Salters' Institute for the award of a Scholarship, and another (J. J. McC.) thanks the Ministry of Education of Northern Ireland for a grant and the Queen's University of Belfast for a Senior Studentship.

[^3]
[^0]: ${ }^{1}$ A. Allmeningen, O. Bastiansen, and P. N. Skancke, Acta Chem. Scand., 1961, 15, 711.
 ${ }^{2}$ I. F. Laurenson and F. A. Rushworth, Proc. Phys. Soc., 1958, 72, 791.
 ${ }^{3}$ K. S. Pitzer and W. E. Donath, J. Amer. Chem. Soc., 1959, 81, 3213.
 ${ }^{4}$ G. W. Rathjens, J. Chem. Phys., 1962, 36, 2401.
 ${ }^{5}$ G. Erlandsson, Arkiv Fysik, 1955, 9, 341.
 ${ }^{6}$ B. Ottar, Acta Chem. Scand., 1947, 1, 283.
 ${ }^{7}$ I. F. Halverstadt and W. D. Kumler, J. Amer. Chem. Soc., 1942, 64, 2988.
 ${ }^{8}$ A. I. Vogel, W. T. Cresswell, G. H. Jeffery, and J. Leicester, J., 1952, 514.

[^1]: ${ }^{9}$ L. Hartshorn, J. V. L. Parry, and L. Essen, Proc. Phys. Soc., 1955, 68B, 422.
 10 J. Timmermans, "Physico Chemical Constants of Pure Organic Compounds," Elsevier, Amsterdam, 1950.

[^2]: 11 J. W. Smith, " Electric Dipole Moments," Butterworths, London, 1955.
 12 M. T. Rogers and J. D. Roberts, J. Amer. Chem. Soc., 1946, 68, 843.
 ${ }^{13}$ K. S. Pitzer, Discuss. Faraday Soc., 1951, 10, 66.
 14 D. R. Lide, J. Chem. Phys., 1958, 29, 1426.
 ${ }^{15}$ F. H. Westheimer, " Steric Effects in Organic Chemistry," ed. M. S. Newman, Wiley, New York, 1956.

[^3]: (R. J. B., G. M. G., and L. E. S.) Physical Chemistry Laboratory, Oxford.
 (H. B. H. and J. J. McC.) The Queen's University, Belfast.
 [Received, January 11th, 1965.]
 ${ }^{16}$ C. A. Coulson, "Valence," 2nd edn., 1961, Oxford, p. 216.

